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SUMMARY

In the present work a finite-difference technique is developed for the implementation of a new method
proposed by Aristov and Pukhnachev (Doklady Phys. 2004; 49(2):112–115) for modeling of the axisym-
metric viscous incompressible fluid flows. A new function is introduced that is related to the pressure and
a system similar to the vorticity/stream function formulation is derived for the cross-flow. This system
is coupled to an equation for the azimuthal velocity component. The scheme and the algorithm treat the
equations for the cross-flow as an inextricably coupled system, which allows one to satisfy two conditions
for the stream function with no condition on the auxiliary function. The issue of singularity of the matrix
is tackled by adding a small parameter in the boundary conditions. The scheme is thoroughly validated
on grids with different resolutions.

The new numerical tool is applied to the Taylor flow between concentric rotating cylinders when the
upper and lower lids are allowed to rotate independently from the inner cylinder, while the outer cylinder is
held at rest. The phenomenology of this flow is adequately represented by the numerical model, including
the hysteresis that takes place near certain specific values of the Reynolds number. Thus, the present
results can be construed to demonstrate the viability of the new model. The success can be attributed to
the adequate physical nature of the auxiliary function. The proposed technique can be used in the future
for in-depth investigations of the bifurcation phenomena in rotating flows. Copyright q 2009 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Axisymmetric rotating flows have been studied for a variety of reasons. Their technological appli-
cations are many (e.g. centrifugal pumps, cyclone separators). Their importance in geophysics is
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demonstrated over a large range of scales (e.g. tornadoes, hurricanes, ocean circulations). Axisym-
metric rotating flows occur past axisymmetric bodies, in axisymmetric jets, etc. A well-studied
example is the flow between concentric cylinders where the inner cylinder rotates, which is
commonly called the Taylor–Couette problem. The transition from a purely azimuthal Couette
flow to a flow with secondary streaming exhibiting cellular Taylor vortexes has been recognized
as a cornerstone of the hydrodynamic stability theory. In addition, the problem of the onset of
Taylor vortices in a viscous fluid contained between concentric rotating cylinders is an excellent
benchmark problem for axisymmetric flows.

When the lids and the cylinders of the Taylor–Couette flow are allowed to rotate at different
angular speeds, the phenomenology of the flow becomes very rich and different flow regimes can
take place in the wake of the bifurcation phenomenon. In series of works [1–3], the mechanism of
vortex breakdown in swirling flows is studied and a comparison between experimental visualization
and numerical simulations is presented. The bifurcation for differential rotation of the lids is
extensively studied also in [4].

A new form of the Navier–Stokes equations (NSEs) for the axisymmetric motion of a viscous
incompressible fluid was proposed by Aristov and Pukhnachev [5] who introduced a new function
related to the pressure and succeeded in deriving a coupled system of two elliptic equations for
the stream function and the new function. This system is coupled to the equation for the azimuthal
velocity component. Mathematically, this formulation resembles the stream function/vorticity
formulation but the physical meaning of the coupling function is different. The new formulation
offers the possibility to create a different numerical model, which is the main purpose of the present
paper. Because of the physical nature of the coupling function, the model may have different
mathematical properties than the vorticity/stream function formulation. It can serve both as a vali-
dation of the known numerical solutions, and for future in-depth investigation of the bifurcation
phenomena in rotating flows.

The paper is organized as follows. Section 2 presents the new set of governing equations of
motion as given in [5]. Section 3 gives the geometry of the flow. Section 4 is devoted to the
description of the numerical scheme and algorithm we propose for the model from [5]. Further,
a thorough validation of the scheme is performed through a detailed comparison with the available
numerical and experimental data (see [6]). Section 5 presents the results obtained with the proposed
numerical model for several characteristic cases where the flow is very sensitive to small changes
of the governing parameters and the quality of the numerical model is of prime importance.
We elucidate the impact of the relative angular speeds of the lids and of the aspect ratio on the
route to bifurcation and the specific patterns of the flow. Special attention is paid for obtaining
accurate results on the hysteresis of the flow that takes place with the increase and decrease in the
Reynolds number. Finally, Section 6 summarizes the results of the paper.

2. ARISTOV–PUKHNACHEV FORMULATION

Traditionally, axisymmetric rotating flows have been treated by representing NSEs in cylindrical
coordinates. The stream function, stream function/vorticity, or (alternatively) the velocity and
pressure fields can be used. An intensive body of the literature exists on the numerical simulation
of Taylor–Couette flow. Here, we discuss a modification of the governing equations proposed
in [5]. To make this paper self-contained, we present the derivation of the new formulation. First,
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we write the axisymmetric NSEs in cylindrical polar coordinate system (r,�, z):

ut +uur +wuz− v2

r
=−pr +�

(
urr + 1

r
ur − 1

r2
u+uzz

)
(1)

vt +uvr +wvz+ uv

r
=�

(
vrr + 1

r
vr − 1

r2
v+vzz

)
(2)

wt +uwr +wwz =−pz+�
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wrr + 1

r
wr +wzz

)
(3)

ur + u

r
+wz =0 (4)

where u, v, and w are the radial, the azimuthal, and the axial velocity components, respectively,
p is the pressure, and � is the kinematic viscosity. Without loss of generality, the fluid density is
taken to be equal to unity, and the fluid is subjected to the potential external forces. In terms of
the stream function �

u=−1

r
�z, w= 1

r
�r (5)

Equation (3) yields
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The key element of the formulation of Aristov and Pukhnachev [5] is that there exists a function
� that satisfies the relations

p=− 1

r2
�2
r + 1

r
�r (6)

�t −
1

r
�r�z+�z =�E� (7)

The substitution of Equation (5) into Equation (2) yields

Jt − 1

r
�z Jr +

1

r
�r Jz =�E J (8)

where J =rv. Upon differentiating Equation (6) with respect to r , Equation (7)—with respect to z,
and substituting the result into Equation (1), one obtains

E�= 1

r2

(
J 2+�2

z

)
+ 2

r
�r E� (9)

The aim of the present work is to develop and validate a finite-difference scheme for the
approximate solution of Equations (7)–(9). Below, we will consider only the case where no-slip
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conditions are prescribed at the boundary of the flow domain. In term of the functions � and J ,
these conditions read as

��

�n
=0, �=0, J =�r2 (10)

where ��/�n stands for the derivative in the direction of the normal vector to the boundary, �
is the rate of rotation of boundary surfaces. To complete the formulation of the problem, it is
necessary to specify the initial conditions

�=�0(r, z), J = J0(r, z), t=0 (11)

Equation (8) and boundary condition (10) for J can be effectively decoupled and solved inde-
pendently assuming that � is known. The main difficulty in solving the system of equations for
� and � is that two boundary conditions are specified for � while none is available for �. This
difficulty is similar to the vorticity–stream function equations in two dimensions. To overcome
the difficulty caused by the absence of boundary condition for �, the authors of [5] transform
equation (9) into a fourth-order equation by applying the operator E and using the boundary
condition ��/�n=0. Then, the boundary conditions for functions � and � are uncoupled and
iterative solution procedures can be used to find approximate solution. The weak point of such
an approach is the necessity to solve the Neumann problem for the bi-harmonic equation. The
uncoupled solution of this problem can be found up to an arbitrary function, which satisfies the
equation E�̃=0. Here, in order to avoid the Neumann boundary value problem, we propose to
solve the system as it stands, without further manipulation.

3. THE FEATURING EXAMPLE

The Taylor–Couette flow provides a unique opportunity for a detailed comparison between the
results of experimental and numerical investigations because it is one of the best studied axisym-
metric viscous flows. Following [6] we consider a variant of the standard Taylor–Couette flow, in
which the lids can rotate independently from the inner cylinder. A schematic of the flow geometry
is shown in Figure 1 where the parameters are defined. Ri is the radius of the inner cylinder, Ro
is the radius of the outer cylinder, L is the axial length (height), �i is the angular velocity of the
inner cylinder, �e is the angular velocity of the lower lid, and �u is the angular velocity of the
upper lid. If �u=0, then we have the case when the upper lid is at rest. For a rotating upper lid,
we have �u=�e.

The non-dimensional parameters of the problem are

Re= DRi�i

�
, �= �e

�i
, �= L

D
, �= Ro

Ri
, D= Ro−Ri (12)

where Re is the Reynolds number based on the angular speed of the inner cylinder. We do not
need a special dimensionless parameter for the upper lid rotation, because it will be either zero
or equal to the lower lid. Then the system of Equations (7)–(9) can be made dimensionless by
introducing the new variables

r̂ = r

D
, ẑ= z

D
, t̂= t�

D2
, Ĵ = J

�
, �̂= �

�D
, �̂= �

�2
(13)
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Figure 1. Sketch of the flow domain.

where the gap width D is used as the length scale, and the diffusion time across the gap, D2�−1—as
the time scale.

4. DIFFERENCE SCHEME AND VALIDATIONS

A plethora of numerical approaches to the Taylor–Couette flow is available in the literature.
We mention a few here. In [7], the governing equations are solved by a finite-difference method
using the stream function–vorticity formulation. The equations are discretized using second-order
accurate central differences and are time stepped using a combination of second-order accurate
Crank–Nicolson and Adam–Bashfort methods. In [8], the NSEs are solved using a finite-volume
method based on the SIMPLE algorithm. The QUICK scheme is used for the convective terms.
The finite-element package ENTWINE is applied to the steady axisymmetric NSEs in [6, 9–11].
We create in this section, a difference scheme and algorithm for the formulation of [5] and compare
the results with the mentioned known numerical works.

We cover the non-dimensional domain

Q=
{

1

�−1
<r <

�

�−1
,0< z<�

}
with a uniform staggered grid

Qh =
{
(ri , z j )|ri = 1

�−1
+(i−1.5)hr , z j =( j−1.5)hz, i=1, . . . ,Nr , j =1, . . . ,Nz

}
(see Figure 2) with spacings

hr = 1

Nr −2
, hz = �

Nz−2
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Figure 2. The computational domain with the grid.

in the r - and z-directions, respectively. Such grid allows one to use central differences to approx-
imate the boundary conditions with second order on two-point stencils. In addition, the different
functions of the system are staggered in time, which allows us to effectively decouple the equation
for the azimuthal velocity J from the equations for the secondary streaming in the cross section
(� and �).

We begin with Equation (8) for the function J , which is approximated at the half-time steps.
We use the following Crank–Nicolson scheme:

Jn+1/2
i, j − Jn−1/2

i, j

�
= 1

8ri hr hz
(�n

i, j+1−�n
i, j−1)(J

n+1/2
i+1, j − Jn+1/2

i−1, j + Jn−1/2
i+1, j − Jn−1/2

i−1, j )

− 1

8ri hr hz
(�n

i+1, j −�n
i−1, j )(J

n+1/2
i, j+1 − Jn+1/2

i, j−1 + Jn−1/2
i, j+1 − Jn−1/2

i, j−1 )

+1

2
(E Jn+1/2

i, j +E Jn−1/2
i, j ) for i=2, . . . ,Nr −1, j =2, . . . ,Nz−1 (14)

We use the notation

E Ji, j = Ji+1, j −2Ji, j + Ji−1, j

h2r
− Ji+1, j − Ji−1, j

2ri hr
+ Ji, j+1−2Ji, j + Ji, j−1

h2z
(15)

The boundary conditions are approximated as follows:

Jn+1/2
1, j + Jn+1/2

2, j

2
= Re

�−1
,

Jn+1/2
Nr−1, j + Jn+1/2

Nr , j

2
=0, j =1, . . . ,Nz

Jn+1/2
i,1 +Jn+1/2

i,2

2
= Re(�−1)�r2i ,

Jn+1/2
i,Nz−1+Jn+1/2

i,Nz

2
= Re(�−1)��ur

2
i , i=1, . . . ,Nr

(16)

Here, we use the notation �u to treat the two main cases in a unified manner. If �u=0, then
we have the case when the upper lid is at rest. For a rotating upper lid, we have �u=1.
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We use the standard routines DGBSV and DGBSVX from LAPACK for the numerical solution of
the algebraic system. The essential element of the proposed algorithm is that Equations (7) and (9)
for � and � are considered as a coupled system. Note that � and � are evaluated on the full-time
steps. This formulation is based on the idea of regarding the two boundary conditions for � as the
actual conditions for the �−� system. The approach is akin to the conjugate algorithm for stream
function/vorticity formulation from [12] and to the one for the primitive variables from [13].
We tackle the boundary conditions in a fully implicit manner through special rearrangement of
the values of the unknown functions.

We employ second-order central-difference approximations for the operators in Equations (7)
and (9). The system of difference equations is

�n+1
i, j −�n

i, j

�
− (�n

i+1, j −�n
i−1, j )(�

n+1
i, j+1−�n+1

i, j−1)+(�n+1
i+1, j −�n+1

i−1, j )(�
n
i, j+1−�n

i, j−1)

8ri hr hz

+ (�n+1
i, j+1−�n+1

i, j−1)

2hz
= 1

2
(E�n+1

i, j +E�n
i, j ) (17)

E�n+1
i, j = 1

r2i

[
(Jn+1/2

i, j )2+ 1

4h2z
(�n

i, j+1−�n
i, j−1)(�

n+1
i, j+1−�n+1

i, j−1)

]

+ 1

2ri hr
[(�n

i+1, j −�n
i−1, j )E�n+1

i, j +(�n+1
i+1, j −�n+1

i−1, j )E�n
i, j ]

i=2, . . . ,Nr −1, j =2, . . . ,Nz−1 (18)

Equations (17)–(18) are coupled by the boundary conditions in the following form:

�n+1
2, j +�n+1

1, j

2
=0,

�n+1
2, j −�n+1

1, j

hr
=0

�n+1
Nr , j

+�n+1
Nr−1, j

2
=0,

�n+1
Nr , j

−�n+1
Nr−1, j

hr
=0

j =2, . . . ,Nz−1

�n+1
i,2 +�n+1

i,1

2
=0,

�n+1
i,2 −�n+1

i,1

hz
=0

�n+1
i,Nz

+�n+1
i,Nz−1

2
=0,

�n+1
i,Nz

−�n+1
i,Nz−1

hz
=0

i=2, . . . ,Nr −1

(19)

To combine Equations (17)–(19) as a single linear system with banded matrix we introduce new
system of indices as follows:

k(i, j) =2(i−1)Nz+2 j−1, i=1, . . . ,Nr

m(i, j) =2(i−1)Nz+2 j=k(i, j)+1, j =1, . . . ,Nz
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Each node (i, j) of the grid Qh is associated with two indices k(i, j) and m(i, j). Index k(i, j) is an
odd number and index m(i, j) is an even number. It is easy to see that

k(i+1, j) =k(i, j)+2Nz, k(i, j+1) =k(i, j)+2

k(i−1, j) =k(i, j)−2Nz, k(i, j−1) =k(i, j)−2
(20a)

m(i+1, j) =m(i, j)+2Nz, m(i, j+1) =m(i, j)+2

m(i−1, j) =m(i, j)−2Nz, m(i, j−1) =m(i, j)−2
(20b)

Now we introduce a new grid function �k , which is defined on the composite grid. Here, �k
represents �i, j and �m represents �i, j . Substituting �k and �m in lieu of �i, j and �i, j in the
Equations (17)–(18), we recast the algebraic system as the following:

�n+1
k −�nk

�
− 1

8ri hr hz
[(�nk+2Nz

−�nk−2Nz
)(�n+1
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k−2)+(�n+1
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1

2hz
(�n+1
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1

2
(E�n+1

k +E�nk )

(21a)

E�n+1
m = 1
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[
(Ji, j )

2+ 1

4h2z
(�nm+1−�nm−3)(�

n+1
m+1−�n+1
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]

+ 1
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[
(�nm+2Nz−1−�nm−2Nz−1)

2hr
E�n+1

m−1+ (�n+1
m+2Nz−1−�n+1

m−2Nz−1)

2hr
E�nm−1

]
(21b)

where

E�k =
(
�k+2Nz −2�k+�k−2Nz

)
h2r

−
(
�k+2Nz −�k−2Nz

)
2ri hr

+ (�k+2−2�k+�k−2)

h2z

Since the boundary conditions (19) are homogeneous, the straightforward implementation of
the algorithm leads to a problem with a singular matrix. There are different ways to regularize
the problem. We found that adding a small term proportional to � at the boundary gives the best
results. According to this idea, Equation (19) can be rewritten as follows:

�n+1
k +�n+1

k+2Nz

2
=0,

�n+1
m+2Nz−1−�n+1

m−1

hr
=0, i=1, j =1, . . . ,Nz (22a)

�n+1
k +�n+1

k−2Nz

2
=0,

�n+1
m−1−�n+1

m−2Nz−1

hr
=0, i=Nr , j =1, . . . ,Nz (22b)

�n+1
k +�n+1

k+2

2
=0,

�n+1
m+1−�n+1

m−1

hz
=��n+1

m , j =1, i=1, . . . ,Nr (22c)

�n+1
k +�n+1

k−2

2
=0,

�n+1
m−1−�n+1

m−3

hz
=��n+1

m , j =Nz, i=1, . . . ,Nr (22d)

where � is a very small number.
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The above-described scheme allows one to compute any kind of transient unsteady regimes of
the flow under consideration. If the steady flow is the aim, then the algorithm can be considered
as an iterative procedure and the time steps are terminated at certain n=N when the following
criterion is satisfied:

max
i, j

|fN+1
i, j −fNi, j |

max
i, j

|fN+1
i, j | �10−6

where fi, j ={�i, j , Ji, j } is the vector of all unknown variables at a given point of the grid.
Note that the linear system for the coupled formulation of the �−� problem can be written as

the following multi-diagonal system for the composite grid function �

Bl,l−2Nz−1�
n+1
l−2Nz−1+Bl,l−2Nz�

n+1
l−2Nz

+Bl,l−3�
n+1
l−3 +Bl,l−2�

n+1
l−2

+Bl,l−1�
n+1
l−1 +Bl,l�

n+1
l +Bl+1�

n+1
l+1 +Bl,l+2�

n+1
l+2

+Bl,l+2Nz−1�
n+1
l+2Nz−1+Bl,l+2Nz�

n+1
l+2Nz

+Bl,l+2Nz+1�
n+1
l+2Nz+1=Fl (23)

where l=1, . . . ,2NzNr . The matrix of the algebraic system Equation (23) is banded with 2Nz+1
lower and 2Nz+1 upper diagonals. We used standard routines DGBSV and DGBSVX of the LAPACK
to solve Equation (23).

Naturally, before doing anything else, we studied thoroughly the impact of the small parameter
� on the results. We computed the condition number, Ncond, of the matrix of Equation (23) using
the routine DGBSVX of LAPACK and found that the Ncond≈103/� in the range �∈[10−14,10−4].

Clearly, there is a trade-off in selecting the value of �. It is desirable to take it very small
but then the condition number will become intolerably large. In order to estimate the optimal �,
we ran computations with several different �’s. The results are summarized in Table I, where the
dependence on � of the maximal and minimal components of the solution are represented. One
can see that variations of � in the range 10−10–10−6 have no impact on the computed quantities
within four to five significant digits. This kind of accuracy is much better than the truncation error
of the scheme and it is a small price to pay for removing the singularity of the matrix.

Table I. Effect of parameter � on numerical solution for grid 22×42. �u=1, �=2, �=2, Re=80.

� � �min �max �min �max Jmin Jmax

0 10−2 −3.68293 3.68293 −87.1066 142.977 −39.9864 120.014
10−4 −3.37555 3.37555 −95.6708 140.492 −40.3144 119.688
10−6 −3.37560 3.37560 −96.6644 132.361 −40.3143 119.686
10−8 −3.37555 3.37555 −96.6659 132.378 −40.3144 119.686
10−10 −3.37555 3.37555 −96.6612 132.477 −40.3144 119.686

1 10−2 −6.53545 6.53545 −322.564 110.315 −150.655 473.445
10−4 −7.97748 7.97748 −422.439 190.444 −155.980 468.120
10−6 −7.97720 7.97720 −425.924 160.543 −155.978 468.122
10−8 −7.97748 7.97748 −425.944 160.554 −155.980 468.120
10−10 −7.97748 7.97748 −425.947 160.573 −155.980 468.120
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Figure 3. Effect of � on solution at the boundary. Re=80,�=2, and �=2: (a) function � for �=0;
(b) function � for �=1; and (c) stream function �.

An additional insight into the impact of � can be obtained from the results presented in Figure 3
for the values of � and � at the flow boundaries. In Figure 3, dash-dotted lines correspond to
�=10−2, dashed lines with diamond signs represent �=10−6, dashed lines with circle signs
represent case �=10−10, and solid lines correspond to �=10−14. Note that the values �<10−10

correspond to N−1
cond that is lesser than the round-off error. The results for the very small � are not

practical and are presented here for the sake of completeness. One can observe from Figure 3(b)
that if 10−10���10−6, the variations of � at the boundaries are negligible. If � is too small, say,
��10−12, then � oscillates near the ‘correct’ values (left panel of Figure 3(b)). It is interesting to
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Table II. Results of simulation on different grids for Re=80, �=0, �=2,�=2.

Mr ×Nz max
i, j

|�i, j | Rate

12×22 0.04000
22×42 0.04219 2.50069
42×82 0.04257 2.38466
62×122 0.04266

note that more significant oscillations were observed only at the boundary of the inner cylinder.
Figure 3(c) shows the values of stream function versus z for r =1.5 and �=0 and 1, � varies from
10−2 to 10−14 (lines with cross signs correspond to �=10−14). One can see that for �∈[10−14,10−6]
the values of stream function change less than 1%.

To estimate the rate of convergence, the solution is obtained on a sequence of grids with 12×22,
22×42, 42×82, and 62×122 nodes. The finest grid is used as a reference solution (pseudo-
analytical solution). Then the rate of convergence is computed using two grids according to the
formula

rate1= ln2
|max�12×22−max�62×122|
|max�22×42−max�62×122| , rate2= ln2

|max�22×42−max�62×122|
|max�42×82−max�62×122| (24)

Since we have four grids, we can get two different estimates of the rate. As shown in Table II for
one particular choice of the parameters, the two numerically estimated rates, Equation (24), are
close to the theoretically predicted second rate of convergence. The interesting thing is that both
rates are somewhat better than the theoretical but the tendency is toward approaching the latter.
Apparently the coarsest grid 12×22 is not adequate enough.

The results of this section suffice to claim that both the new formulation [5] and its numerical
implementation offer a valid approach toward the numerical investigation of rotating flows.

5. RESULTS AND COMPARISONS

In this section we apply the developed numerical tool for investigating the mechanisms of the
Taylor–Couette flow for different values of the governing parameters.

5.1. Role of the relative angular speed � of the lids

As mentioned above, we consider the case when both lids rotate with the same angular velocity �e,
while the outer cylinder is held at rest. The ratio �=�e/�i is one of the main governing parameters
of the problem. It is important to investigate the bifurcation and emergence of a secondary streaming
in the vertical plane for different values of �. In this subsection, we fix �=2, Re=80, �=2, and
vary �. The results are obtained for each case beginning from the solution for Re=0 and then
gradually increasing the Reynolds number up to the selected value Re=80. The way of varying
the Reynolds number is important because the problem is nonlinear and presents a classical case
of hysteresis: the result depends on the route chosen to obtain it. The hysteresis will be treated in
Section 5.3.
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Figure 4. Contour plots of stream function �, azimuthal velocity component J =rv, function �, pressure p,
and vorticity 	 for �=2, Re=80,�=2.
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Table III. Comparison of �max for the �=0,0.3,0.304,0.32,1 and Re=80,�=2,�=2.

� 0 0.3 0.304 0.32 1

Present (42×82) 0.04257 0.00855 0.00584 0.01636 0.10010
Reference [6] 0.04270 0.00869 0.00578 0.01667 0.10014
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Figure 5. Boundary profiles of � for Re=80,�=2,�=2, and different �’s.

The results from our computations are presented in Figure 4. The first row of drawings gives
the streamlines in the (r, z)-plane, the second row—isolines of azimuthal function J , the third row
shows the isolines of �, the fourth row shows the lines of constant pressure p, the last (fifth) row
presents the isolines of vorticity 	. Note that the vorticity and pressure are computed from � and
� after the iterations converge. The streamline patterns are in excellent agreement with the results
of [6].

As mentioned in [6], when �=0, the flow regime is characterized by an inward flow adjacent
to both of the lids and a narrow jet in the axial mid-plane flowing toward the outer cylinder. If the
lids rotate synchronously with the inner cylinder (�=1), a different regime appears. The direction
of flow is opposite to that in the case of �=0. When the relative rotation rate of the lids, �, is
increased from zero to one, one of the patterns gradually morphs into the other. Our computational
experiments shown that the flow pattern changes qualitatively in the range of �∈[0.3,0.32], which
is in agreement with [6]. The maximum values of stream function are given in Table III. They are
in close agreement with the computational and experimental data [6].

Function � is the most sensitive function in the numerical computations, and it reveals some
deeper mechanisms of the rotational flow. We find it important to understand better the behavior
of this function for �’s in the interval where the transformation of the flow regime occurs. We
present in Figure 5, the boundary distribution of � as a function of the vertical coordinate z (left
and middle panels) and as a function of the radial coordinate r (right panel).

In the case �=0 (the lids do not rotate), the function � has positive maximum in the middle
of the vertical wall (z=1). For �=1 (the lids rotate simultaneously with inner cylinder), � has
negative minimum. Thus, we see that the boundary profiles of � change dramatically for those
� for which the streamline patterns change.

We continue with the examination of the 2D profile of � shown in Figure 6. One can see that
while for �=0, the profile is more like a cup, with the increase of � it transforms first into an

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1063–1080
DOI: 10.1002/fld



1076 N. P. MOSHKIN, K. POOCHINAPAN AND C. I. CHRISTOV

1
1.5

2

0
1

2

0

100

r
z 1

1.5
2

0
1

2

0

100

r
z

1
1.5

2

0
1

2

0

100

r
z

(a)

(c) 1
1.5

2

0
1

2

0

200

r
z

(d)

(b)

Figure 6. Surface plots of � for Re=80,�=2, and �=2 and four different values of �: (a) �=0;
(b) �=0.3; (c) �=0.32; and (d) �=1.

almost cylindrical surface (in the region �∈[0.3,0.32] of appearance of the four-eddy solution)
and eventually adopts a saddle shape for �=1.

5.2. Role of the aspect ratio �

The dynamics of the flow when driven by the rotation of the inner cylinder and the bottom lid
only (�u=0,�=1), was investigated in [14] for Re∈[100,200], �∈[2.5,3.25], and �=2. It was
pointed out there that for Re=100 and small to moderate �, the flow consists of a single cell,
created essentially by the rotation of the bottom lid. As the relative length � increases, the one-
eddy stationary flow is eventually replaced by a three-eddy structure. It is important to apply the
tool developed here for the investigation of the transformation of secondary streaming for �u=0.
To compare with the experiments we select Re=100 and �=2 and vary �. Figure 7 presents our
result for the transformation of the secondary flow with increasing �.

We have found that a sole vortex appears in the secondary streaming for �<2.5. Since the inner
cylinder is rotating, the vortex cannot split into two counter-rotating eddies, hence for �=2.5 and
�=2.7, a pattern known as ‘Kelvin’s cat’s eye’ develops. If it were a primary flow, the appearance
of the cat’s eye is a clear indication of pending instability, but in secondary streaming, it is quite
a standard situation to have a streaming of a type of cat’s eye (see, for instance [15] for the flow
in rotating annulus and [16] for the secondary flow in the cross section of a curved pipe).

The further increase of the aspect ratio to �=2.8 leads to ‘pinching’ the vortex of the secondary
streaming and �=2.81 marks the actual transition to a three-eddy structure, when the small third
eddy occurs between the two eyes of the cat’s eye and spans with the increase of � the entire
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Figure 7. Sequence of the steady axisymmetric solutions for Re=100 for different �.

breath of the gap. As it should have been expected, the further increase of � allows the third eddy
to grow and to become commensurate with the other two.

Once again, function � manifests itself as a characteristic that is very sensitive to qualitative
changes. Even before the third eddy becomes visible in the flow pattern, � develops a minimum
approximately in the same region where the third eddy is about to appear. The position of the
minimum moves up with the expansion of the third eddy.

Note that the results in Figure 7 are obtained with initial conditions that are the flow fields
for the previous (smaller) value of �. For the relatively low Reynolds number, Re=80, we did
not discover a hysteresis effect, which is expected to appear when the nonlinearity dominates the
dynamics.
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Figure 8. Sequence of flow pattern with different Re for �=3.226, �=2.
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5.3. Role of Reynolds number Re and hysteresis

In order to understand better the role of nonlinearity in the process of transition from a two-eddy
to a three-eddy secondary streaming, we chose �=3.226 which lies securely inside the region of
parameters where the three-eddy structure is to be expected. For consistency, we consider the same
�=2 when the bottom lid and the inner cylinder rotate together (�=1), while the upper lid and
the outer cylinder are at rest. Experimental and numerical studies of this particular Taylor–Couette
flow were conducted in [9, 14]. In the experiments of [9], for a fixed aspect ratio, observations of
the flow with different Reynolds number were performed. Beginning with certain critical Re, a
saddle-node bifurcation was discovered, which brings into existence a single cell flow.

We utilized our algorithm to compute a ‘typical’ sequence of steady-state patterns for
the same parameters as those used in [9]. After the flow is established for a particular
Reynolds number (say, Re0), we increase Re in small increments according to the formula
Re=Re0(1−exp(−0.05(n−1))), where n=1,2, . . . ,n f is the time step. The number n f defines
the value of Re, which has to be reached. Then we continue the time steps n>n f with the last
value of the Reynolds number until stationary regime is attained. Thus, we are able to proceed
from one Reynolds number to another without imposing discontinuous initial condition. These
precautions are needed in order to avoid artificial jumps that can make the solution end up in
another bifurcated state.

The steady states that we were able to reach with this algorithm are shown in Figure 8. As
usual, we show the stream function in the first row, the azimuthal function—in the second row,
and �-function—in the third. By slowly increasing Re we reached Re=350 for which Reynolds
number the flow changed from a three-eddy structure to a single eddy. The interesting property
that is observed in this series of computations is the hysteresis. Now, beginning with Re=350
we started gradually decreasing the Reynolds number according to the rule Re=350−38.4(1−
exp(−0.05(n−1))), and found that the one-eddy solution exists in the region where the three-eddy
solution also exists. Coming down from a higher Re, the smallest Re for which we found a
one-eddy solution was Re=311.6. The grid consisted of 32×62 nodes and time increment was
�=0.001. The results of our numerical experiments compare quantitatively very well with the case
presented in [9], where results of numerical simulations are compared with results of physical
experiments.

6. CONCLUSION

The new formulation for axisymmetric Navier–Stokes flows proposed by Aristov and Pukhnachev
[5], is implemented numerically. The approximations for the different functions are staggered in
time. Thus, the equation for the azimuthal velocity component is decoupled from the rest of the
equations and is approximated on fractional time steps. The equations for the stream function,
�, and the new unknown function of Aristov–Pukhnachev’s formulation, �, are considered as a
coupled system at full time steps. The coupling for the latter system is crucial because of the lack
of boundary conditions for the new function and the presence of two boundary conditions for the
stream function. Upon renumbering the grid points in a hopscotch manner, the coupled system is
formulated as a single system and solved by a LAPACK algorithm.

The main difficulty with this formulation is that the coupled system for � and � is singular.
To avoid the singularity, part of the Neumann boundary conditions for the composite function
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is replaced by Robin boundary conditions with a small parameter multiplying the function. The
result is that the originally infinite condition number of the system behaves as 1000�−1 and even
for very small �∝10−10, the Gaussian elimination is perfectly stable. The impact on the results of
the actual value of the artificial small parameter is judiciously evaluated by numerical experiments
and shows that for �∝10−6, the results are correct within six significant digits, which is much
better than the truncation error.

The new numerical model is applied to the flow between two rotating cylinders when the lids
are also allowed to rotate. This particular Taylor–Couette flow exhibits a rich phenomenology
depending on the relative rotations of the lids. We show that the new technique performs robustly
and allows one to follow accurately the rearrangement of the flow patterns with the changes of
the relative rotation of the lids, �. The results are in good quantitative agreement with [6, 9, 14]
in the common ranges of the main parameters.

The present paper shows that the Aristov–Pukhnachev’s formulation is a viable approach to
axisymmetric Navier–Stokes flows and can serve as a basis for efficient numerical models.
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